Toward Scatter Classification at Middle Latitudes

E. S. Miller and E. R. Talaat

APL

Geospace and Earth Science Group Johns Hopkins University Applied Physics Laboratory

31 May 2011

SuperDARN Network

SuperDARN Network

Miller, et al SuperDARN 2011 — Mid-Latitude Scatter

SuperDARN Network

- Installed to observe expansion of convection pattern equatorward of traditional SuperDARN boundaries.
 - This happens with some regularity, but quiet conditions prevail.
- What is observed during quiet time?
- Signal to one is noise to another.
 - scatter ∈ {ionospheric, ground} does not describe mid-latitude variability accurately.
 - scatter ∈ {ionospheric, ground} algorithm does not describe mid-latitude physics accurately.
- Consider first climatological behavior.

Wallops Island Climatology

2009 Wallops Island SuperDARN beam #7 backscatter power > 10 dB Climatology

Wallops Island Climatology

2009 Wallops Island SuperDARN beam #7 backscatter power > 10 dB Climatology

Propagation Mechanisms

Refraction

Propagation Mechanisms

Refraction

Field-Aligned - k Irregularities (FAI)

Propagation Mechanisms

Refraction

Field-Aligned k Irregularities (FAI)

Specular Reflection

Density Structure

- Essentially all SuperDARN meteor scatter is specular.
 - FAI typically observed by powerful IS-class radars.
- Meteor trails have short lifetimes (\sim 100 ms).
- Individual trails usually only appear in one range gate in space and time.
- Ensemble of many trails yields "cloud" of scatter at close ranges.

- Thin, dense, turbulent layer of metallic ions at *E*-region altitudes.
- Specular echoes, FAI, ground scatter, all possibilities.
- Separating specular echoes from FAI?

Sporadic-E over Arecibo. After Swartz, et al, 2002.

- Need not be complicated to be informative.
 - Parabolic or Chapman profiles driven by standard URSI coefficients. Or interpolate other datasets, use IRI (called directly from MATLAB).
 - Geomagnetic field (IGRF is easy in MATLAB).
 - Basic Appleton-Hartree magneto-ionic effects.
 - Loosely based on Jones-Stephenson code, but only for 2.5D.
- Find ground scatter location.
- Find $\mathbf{k} \perp \mathbf{B} \rightarrow$ possible FAI location.

Wallops Predictions

Wallops Island SuperDARN beam #7 10500 kHz O-mode

- Drive with Millstone Hill Digisonde.
- Wallops beam #7 passes directly over Millstone.

Wallops Predictions

Miller, et al SuperDARN 2011 — Mid-Latitude Scatter

Scatter Geolocation Tool

Scatter Geolocation Tool

- Triple-hop sporadic-*E* (G-*E_s*) ground scatter 0000–0045 UT.
- Field-aligned irregularity (FAI) scatter from locations where $\textbf{k}\perp\textbf{B}.$
- Differentiate between FAI-*F* and G-*E_s* using Doppler velocity.

Miller, et al SuperDARN 2011 — Mid-Latitude Scatter

- Mid-latitudes exhibit new and subtle sources of SuperDARN scatter.
 - Non-auroral FAI.
 - Sporadic-E.

• Raytracing and phenomenology provide some guidance.

- Not operational, but good for case studies.
- Interferometer elevation can also help (not active at Wallops presently).
- Raytracing in inhomogeneous ionosphere for irregularity studies.